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ABSTRACT

The optimum detection threshold in an on-off binary optical

communications system operating in the presence of atmospheric tur-

bulence has been investigated assuming a poisson detection process

and log normal scintillation. The dependence of the probability of

bit error on log amplitude variance and received signal strength has

been analyzed and semi-emperical relationships to predict the opti-

mum detection threshold derived. On the basis of this analysis a

piecewise linear model for an adaptive threshold detection system is

presented. The bit error probabilities for non-optimum threshold

detection systems have also been investigated.
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INTRODUCTION

It is well known that atmospheric scintillation not only in-

creases the bit error probability in a pulse code modulated optical

communications channel but also influences the decision level for

optimum threshold detection. The later effect is of considerable

practical importance to the design of efficient pulse code modulated

optical communications systems regardless of whether fixed or adap-

tive threshold detection is used. Fried and Schmelzer1 have consid-

ered the bit error rates in an optical communications channel by as-

suming gaussian detection statistics, an approximation which is valid

only for large numbers of signal photons. Titterton and Speck2 have

treated the problem using Poisson statistics so that their results

are valid for small numbers of signal photons also. Although both

previous investigators have recognized that the optimum detection

threshold changes in the presence of scintillation, neither has

studied the effect in depth.

In this paper we investigate the optimum detection threshold in

an on-off binary optical communications channel as a function of the

number of received photoelectrons and the strength of scintillation.

Poisson detection statistics and log normal scintillation are assumed

and, on the basis of this model, expressions to predict the optimum

detection threshold are derived. In addition, we have investigated

the bit error probabilities for sub-optimum choices of detection
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threshold. This is of importance to the design and analysis of

optical communications systems since exact optimization of the

threshold level is never possible, especially in the presence of

atmospheric effects. Application of these results to the design of

fixed and adaptive threshold optical receivers is discussed.

ERROR PROBABILITY IN THE OPTICAL CHANNEL.

We shall consider an on-off binary optical communications chan-

nel in which the laser transmitter may send either a '1', which cor-

responds to a pulse being transmitted, or a '0' which corresponds to

no pulse transmitted. Let S be the number of signal photoelectrons

per pulse received at the detector when a '1' is transmitted and eS

be the number of received signal photoelectrons when a '0' is trans-

mitted. Here c is the reciprocal of the modulator extinction ratio.

We will assume that in addition to the signal photoelectrons the

detector receives N noise photoelectrons per pulse, mostly due to

background. In a threshold detection system the receiver interprets

the received signal as either a '1' or a '0' depending on whether the

total number of received photoelectrons is greater or less than some

threshold level T.

In the presence of scintillation the probability of a detection

error is

PE = P(O)PFA + P(1)(1-PD) (1)



Where P(O) and P(1) are the apriori probabilities of sending '0' and a

'1' respectively, PFA is the false alarm probability, ie. the prob-

ability of a '1' being received given that a '0' was sent, and PD is

the detection probability, ie. the probability of a '1' being re-

ceived given that a '1' was sent. PD and PFA are given by

PFA exp [-(N+ES)] (N+ S) f(S)dS (2)
jFA =t J!

PD J exp [-(N+S)] (N S) f(S)dS (3)
j=t P

Assuming log normal scintillation and a symmetrical pulse code we

obtain

C 2T(T-1) 2_/ T t ' -8C ;Z12
1 e k * 1 (Z+4C (T-1/2))

E 8C k 4 C (TSOe )dZ1

ro_ 3 -8CZ;O *(T Z+4C (T-l/2))
+ ((SO-N)e+N) _e y (T,((SON)+N)e 0 )dZ

(4)

where y is the incomplete gamma function

y* (T,n) = e-nX (5)
n X=T 7- (5)

SO is the average number of signal photoelectrons per pulse and C

is the variance of In(S).
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The bit error probability has been evaluated by numerical in-

tegration of equation 4 on a UNIVAC 1108 computer. The threshold T

was initially taken to be the no scintillation optimum threshold

given by 3

= S(1-) + ln(P(O)/P(1))
O In((S+N)/(N+S)) (6)

An iterative procedure was then used to minimize the error probability

as a function of T, while holding SO, N, e and Ca constant. In this

way we were able to simultaneously determine the optimum threshold in

the presence of scintillation and study the effect of sub-optimum

threshold on the error rates. Calculations were repeated for values

of the parameters SO, c, N and Ck over the ranges likely to be

encountered in practice.

Figure 1 shows the probability of a bit error at optimum thresh-

old as a function of the number of received signal photoelectrons and

the log amplitude variance of scintillation with one background photo-

electron and an extinction ratio of 15 db. The computed values of

bit error probability agree with those previously published by

Titterton and Speck2

One feature of figure 1 which deserves note is the difference

in the slope of the curves for large and small values of the log

amplitude variance. When Ck is less than about 0.02 the error prob-

ability decreases rapidly with increasing number of signal photo-
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electrons, whereas for large values of CA the error probability tends

to become relatively independent of the number of signal photoelectrons

provided that SO is not too small. Thus there appears to be two re-

gions, one in which the error probability is determined primarily

by scintillation and the other in which it is mainly determined by

signal strength. This dicotomy, which we might call the signal

limited and'scintillation limited cases, will be seen more clearly

when we consider the optimum detection threshold in the presence of

scintillation.

An alternate method of displaying these results is in terms of

the transmitted power required to achieve a given bit error rate in

the presence of scintillation as compared to the power required when

there is no scintillation. In figure 2 the required power margin is

shown as a function of bit error rate and log amplitude variance.

These results are essentially independent of the choice of N and e

as long as both are relatively small. Fried and Schmeltzer1 have

developed a similar set of curves based on the assumption of gaussian

detection statistics. Comparison of our results with those of Fried

and Schmeltzer shows that the two models agree reasonably well in

predicting the required power margin for values of C less than about

0.02, but that the gaussian model may underestimate the necessary

power margin by as much as 8 db for Cz equal to 0.03 and 30 db for

CA equal to .05 at error rates of 10-6. For a log amplitude variance

of 0.1 the difference in the power margins predicted by the gaussian
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and Poisson models may exceed 80 db. Thus the gaussian model is

reasonably accurate in the case of weak scintillation but gives an

extremely over-optimistic estimate of a communications system

performance in the presence of strong scintillation.

Since the Poisson distribution approaches a gaussian distri-

bution as the mean increases, it might be expected that our results

should reduce to those of Fried and Schmeltzer in the case of a large

average number of received signal photoelectrons. However, for the

system under consideration a large value of SO is not sufficient to

insure that the Poisson counting statistics can be adequately ap-

proximated by a gaussian distribution. The means of the Poisson

distributions in question are not SO but (N + S) and (N + ES), where

the variable S is averaged over all values from zero to infinity.

Thus if N is small, the mean of the Poisson distribution will be

small over part of the range of S, even though SO is large. Clearly,

when C. is large the contribution to the error probability from that

part of the range of S in which the gaussian approximation is invalid

will be greater. Physically this means that.during a deep fade there

are only a few photoelectrons per pulse; therefore gaussian statistics

can not be used. A second, and perhaps more significant, problem

with Fried and Schmeltzer's model is the assumption of additive noise

independent of the signal strength. This assumption is equivalent to

approximating the Poisson distribution by a gaussian distribution with

constant variance. Since the variance of a Poisson distribution is
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equal to the mean, this assumption is valid only if

N + S = N + eS = constant (7)

for all values of S with non negligible probability of occurance.

In particular, unless N is very large compared to SO, the noise

associated with a zero being received is different from the noise

associated with a one. Therefore Fried and Schmeltzer's ianalysis

can only be valid if the number of noise photoelectrons per pulse

is much greater than the number of signal photoelectrons. In this

case the two analyses should yield the same results.

As a check on our results we have calculated the error prob-

abilities assuming fourty noise photoelectrons per pulse, log

amplitude variances of 0.0 and 0.05 and error probabilities from

10-1 to 3x10l3. For these cases the computed power margin required

to compensate for scintillation agreed with that reported by Fried

and Schmeltzer to within one db. The residual error is due to the

fact that even for fourth noise photoelectrons the condition of

equation 7 is only approximately satisfied.

On the basis of our analysis we conclude that Fried and Schmeltzer's

results contain a fundamental inconsistancy; namely, the number of

signal photoelectrons required to obtain error probabilities less

than about 10-3 is so large that equation 7 can not be satisfied

unless the log amplitude variance is very small. Thus the assumption

of background limited operation is invalid except for the case of

weak scintillation or very high bit error rates.
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OPTIMUM THRESHOLD

The optimum threshold in the presence of scintillation is

shown in figure 3 as a function of the average number of received

signal photoelectrons per pulse. As is to be expected the optimum

threshold decreases with increasing scintillation. For SO greater

than about 10 the curves are very nearly straight lines whose slopes

are dependent on the strength of the scintillation. This linearity

can be understood in the no scintillation case by noting that when

cS is large compared to N equation 6 reduces to

T n(/) S. (8)

With scintillation we may replace equation 8 by a linear relation

of the form

T = a(C )S0 + B (9)

where the parameters a and a can be determined by linear least mean

square fits to the data of figure 3. To a reasonable approximation

we may take B to be 2.5, independent of C,. The slope a, on the

other hand, is strongly dependent on C. as shown in figure 4. The

dependence of the slope on Ck can be represented by the relation

7.5X103C 2
a(C,) = .145(e + 1) (10)
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Perhaps the most striking feature of figure 4 is the distinct

knee that occurs for values of C near 0.02, and corresponds to the

transition from signal strength limited to scintillation limited

conditions. For Cz much larger than 0.02 the slope of the threshold

curve varies only slowly with increasing C. whereas for weak

scintillation the slope is a very strong function of C,. In fact

we can approximate a fairly well in these two regions by straight

lines as shown by the dashed curves in figures 4. Hence

TO = aiC S0 + b iS + C (11)

where the coefficients ai and b. take on either one of two values

depending upon whether C9 is greater or less than the break point.

A piecewise linear approximation of this sort is appealing from an

engineering point of view since it provides a convenient model for

implementing an adaptive threshold detection system. One could en-

vision, for example, a detection system in which the mean and variance

of the received signal power were continuously monitored and the

threshold set in accordance with equation 11. Such a system would

require only linear operations and a single discrete discontinuity

to control the threshold level.

As Titterton and Speck have pointed out (footnote 4 of reference

2) this analysis is applicable to systems in which the threshold is

varied on the basis of a long term estimate (ie. on the order of

seconds) of scintillation and is limited to systems with bit rates



of 107 or less. Tycz, Fitzmaurice and Premo [5] have considered a

perfectly adaptive threshold system for both the log normal and beta

channels.

SUB-OPTIMUM THRESHOLDS

In practice the detection threshold of an optical communications

system operating through the atmosphere will never be perfectly op-

timized. If the threshold is fixed then changing atmospheric condi-

tions will deoptimize the system and even if an adaptive threshold

is used the system will be incapable of precisely tracking changes

in signal strength and turbulence. In order to properly predict a

communication system's performance it is necessary to know the ex-

pected bit error probabilities for non-optimum detection thresholds.

Investigation of the performance of non-optimum threshold detection

is also necessary to the design of adaptive threshold systems.

Figure 5 shows the bit error probability as a function of de-

tection threshold with log amplitude variance as a parameter. The

data plotted is for the case of 40 signal photoelectrons and no

background photoelectrons per pulse and an extinction ratio of 15 db.

Other choices of parameters yielded curves which were essentially

similar.

Inspection of figure 5 shows that with a fixed:detection thresh-

old a decrease in scintillation will always result in an improvement

in system performance even though decreasing the scintillation de-

optimizes the system. That is to say that the bit error probability
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decreases more rapidly with decreasing log amplitude variance than it

is increased by the corresponding deoptimization of the threshold

level. Thus if one selects the detection threshold that is optimum

for the strongest expected scintillation and predicts the error rate

on this basis, one is assured that the system performance will not

be worse under conditions of weaker scintillation. This strategy

might be appropriate if one wishes to insure that a given error rate

will be obtained under all expected conditions.
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Figure 1. Probability of bit error for an on-off binary PCM
optical communications system as a function of the number of
signal photoelectrons for log amplitude variances between 0,0
and O.. One background photoelectron per pulse and a modula-
tion extinction ratio of 15 db. was assumed.

Figure 2. The Loss Factor, defined as the additional trans-
mitted power required to compensate for atmospheric scintil-
lation, is given as a function of the number of received
photoelectrons per pulse and the log-amplitude variance of
scintillation. Other parameters are the same as the preceed-
ing figure.

Figure 3. The optimum detection threshold as a function of
number of signal photoelectrons per pulse and log amplitude
variance of scintillation. Other parameters are the same as
in the preceeding figures.

Figure 4. The slope of the linear portion of the detection
threshold curves (figure 3) as a function of the log amplitude
variance of scintillation. The dashed lines indicate a piece-
wise linear approximation discussed in the text.

Figure 5. Dependence of the bit error probability on detec-
tion threshold for non-optimum detection. Error probability
is plotted as a function of the normalized threshold, T/So,
for S0 = 40.0
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